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Deformed Supersymmetric Oscillators 

S. Meljanac,  1 M. Milekovi~, 2 and A. Perica 1 

Received February 7, 1996 

We construct and discuss the Fock-space representation and the number operator 
for a deformed supersymmetric oscillator with "peculiar" statistics. We suggest 
a possible generalization to multimode deformed oscillators. 

1. INTRODUCTION 

The subject of quantum statistics, which is different from ordinary Bose 
and Fermi statistics, has attracted much attention in the past few years. One 
motivation comes from the study of some phenomena in condensed matter 
where the dynamics is essentially two-dimensional, thus allowing anyon-like 
statistics (Leinaas and Myrheim, 1977; Wilczek, 1982a,b; Wu, 1984a, b). 
Another motivation comes from the theoretical and experimental search for 
possible violation of the Pauli exclusion principle in four dimensions (Ignatiev 
and Kuzmin, 1987; Mohapatra and Greenberg, 1989; Miljani6 et  al., 1990; 
Ramberg and Snow, 1990), where quon-like statistics (Greenberg, 1990, 1991; 
Meljanac and Perica, 1994) might play a significant role. In either case, 
quantum groups and algebras (Drinfeld, 1986; Jimbo, 1985) have offered 
a new insight into the subject. The introduction of q-deformations of the 
Heisenberg-Weyl algebras has led to the investigation of particles interpolat- 
ing between bosons and fermions (Biedenharn, 1989; Macfarlane, 1989). The 
q-bosons have been introduced and discussed in a variety of ways (Tuszynski 
et  al., 1993; Isakov, 1993; Meljanac et  al., 1994a,b; Bardek et  al., 1994a,b; 
Bonatsos and Daskaloyannis, 1992; Odaka et  al., 1991). Particularly useful 
formulations of associative q-boson algebras are proposed through the Yang- 
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Baxter R-matrix (Kulish, 1991; Fairlie and Zachos, 1991; Meljanac e t  al. ,  
1994a,b), which generalizes the notion of permutational symmetry. The sim- 
plest such algebras, associated to 4 • 4 R-matrices, were investigated to 
some extent in Van der Jeugt (1993) and three types of deformed algebras 
were found, among them a "peculiar" algebra which corresponded to the R- 
matrix of the eight-vertex form. The detailed structure of the "peculiar" 
algebra was not discussed in Van der Jeugt (1993) and it remains unclear 
whether this algebra makes sense physically, i.e., whether there exists a well- 
defined Fock-space representation with positive norms and number operators. 

In this paper we investigate the structure of this "peculiar" algebra. We 
construct and discuss the corresponding Fock-space representation and show 
that norms of all states are positive definite (Section 2). We construct and 
discuss the number operators and investigate the origin of "peculiarity." We 
show that this algebra represents a new kind of deformed supersymmetric 
oscillator (Section 3). We suggest a possible generalization of this "peculiar" 
algebra to an arbitrary number of oscillators with the corresponding R-matrix 
(Section 4). Section 5 is devoted to our conclusion. 

2. FOCK-SPACE REPRESENTATION OF 'PECULIAR'  
ALGEBRA 

We start with the following R-matrix formulation of the q-deformed 
boson algebra of the operators ai, ati, i = 1 . . . . .  n: 

a,aj - pRij,klalak = 0 (1)  

a,a] - p'Rki,jtatkat = ~ij 

with the summation over repeated indices and a/t is the Hermitian conjugate 
of ai. Hermiticity implies 

p'Ri j ,  kt = p'*Rt~,yi (2) 

or k t =/~, where kij,n = Pq,mnRm~.kt and P is the permutation operator pZ = 
P, P~i,kt = ~jkSil. Associativity implies: 

(A) The Yang-Baxter equation 

Rab,.~Rvw.caR.e,yw = ~ Rt,e,u~R.,~,fcRav, wa (3) 
td,F,W U,V,W 

(B) The Hecke condition 

(p/~ - 1)(p'R + 1) = 0, /~ = P R  (4) 

The solutions of equations (3) and (4) for n = 2 are given in Van der Jeugt 
(1993). A complete list of solutions of the Yang-Baxter equation (3) for n 
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= 2 is given in Hietarinta (1991). Among them there is a solution with 
"peculiar" statistics associated with the R-matrix of the eight-vertex form 

p R =  

"1 - q2 q2 
+ ~q 0 0 ~, 1 - 

2 2 

0 e,, l  + q2 1 - q 2  
0 

2 2 

0 1 - q2 ~,,1 +q2 
- -  0 

2 2 

e' 1 - 2 q2 0 0 1 - 2 q2 eq 

(5) 

The corresponding "peculiar" oscillator algebra is obtained from (1) with 
p'R = q-2pR: 

(1 - eq)a21 = e'(1 + r 2 

a l a  2 = E"a2al  

1 t alaI = 1 + eq-i + ~ " alal + 

a2a~ = 1 + _~q- i  + 2 a2a2 

-2 
+ q  ~ t  alat 2= r -2 )azal + 

a2atl = e" l  + q ~ t - 2 ) a l a 2 +  

I t )a a2 
1 t .)a,al 

1 t ( ~ ' q - 2 - -  )ata2 

1 t 

(6) 

where q e R, E 2 ~---- E ' 2  = s  : 1. When q2 _ 1, the above algebra (6) 
represents one Bose and one Fermi oscillator which commute or anticommute 
(depending on whether ~" is 1 or - 1). We observe that the "peculiar" algebra 
(6) has no well-defined number operators Nl, N2 in the usual sense: IN;, ay] 

[Ni, aj ] = oti~ij, i, j = 1, 2. From [Nl, al] = - a l  it follows that = _ a i ~ i j ,  f 
2 2 2 [NI, al 2] = - 2 a l .  Owing to (6) one obtains IN1, a2] = -2a2,  which contradicts 

the demanded relation [Nl, a2] = 0. Hence the relations [Nl, a2] = [N2, al] 
= 0 contradict (6). However, the total number operator N = N1 + N2 is well 
defined. Of course, when q2 = 1, the number operators Nt and N2 are also 
well defined, i,e., Nl,2 = NB.F. 
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Let us assume that there is a vacuum 10, 0) satisfying all0, 0) - 0, i 
= 1, 2. The excited states can be constructed by multiple action of the 
operators a~ and at2 on the vacuum 10, 0) and are of the form 

Inl, n2) ~ (a~)nl(atg)n210, 0), hi, n2 ~ N (7) 

Notice that the action of N1 (N2) on the states (7) is not well defined for n2 
>-- 2 (nl --> 2) and hence, in general, n I (n2) is not an eigenvalue of Nl (N2). 
This is a consequence of the quadratic relation a 2 ~ a~ [equations (6)] for 
q2 ~ 1. Furthermore, we find that the I nl, n2) states are degenerate (linearly 
dependent) for the fixed sum nl + n2 = n, in the following sense: I nl, n2) 

In1 - 2k, n 2 + 2k), k E Z, nl - 2k --> 0, n2 + 2k > 0, and I nt + 1, n2 
- 1) oc Inl + 1 - 2 k ,  n 2 -  1 + 2 k ) , k  E Z ; n l  + 1 - 2 k - >  0, n 2 -  1 + 
2k > 0. The states for fixed n can be reduced to two states, In, 0) and I(n 
- 1), 1), or, alternatively, to 10, n) and I1, (n - 1)). Hence, the complete 
set of states can be represented by two symmetric 

In, v) ~ (alt)"(a2*)Vl0, 0) 

Iv, n) ~ (a~)~(at2)"10, 0) 

pictures (for q2 :/: 1) 

(8a) 

(8b) 

where n e No, v = 0, 1. Now, n (v) is the eigenvalue of Nl (N2) in the 
picture (8a), and of N2 (N0 in the picture (8b). In the following we use the 
first picture (8a). 

There are two towers of states generated by the at creation operator. 
One tower is In, 0), generated from the 10, 0) vacuum (v = 0). The other 
tower is In, 1), generated from the second vacuum 10, 1) (v = 1). Using the 
algebra (6), we find that 

a~al(atOn(at2)~lO, O) = ~l(n,  v)(a~)~(at2)~lO, O) 

where 

1 
~bl(n, v) = ~ [n](w)-l(1 + (cq) t-n-2v) 

(eq)-" - 1 
[n]f~)- t  (eq)  -1 -- 1 '  n ~ No, v = O, 1 

(9) 

It is important to observe that, for q e R, the function (~1 is positive: ~ l ( n ,  
v) > 0, Vn e No, v = 0, 1. Furthermore, ~b(n, v) cannot be written as a 
function of one variable. If this could have been done, this would mean that 
there would be only one tower of states, and that al ~ a2. Hence, all states 
(a~)n(at2)~'lO, 0), picture (8a), have positive-definite norms and can be normal- 
ized. The normalized states are 
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(a~)"(a~)"l O, O) 
In, v} = ~/[d~l(n ' v)]! (10) 

where [gbj(n, v)]! = d~t(n, v) .-- d~l(1, v), [d~l(0, v)][ = 1, and the orthonor- 
mality condition reads (n, v ln', v') = 8~n'8~', v, v' = 0, 1. Owing to this 
orthonormality relation, any linear combination of states, Eq. (10), has a 
positive norm. In particular, 

[IoLIn, 0) + [3In - 1, 1)112 = levi 2 + 11312 > 0 

It is easy to find the action of  the ai, a/* operators on the states, Eq. (10), namely 

a~ln, v} = x/qbl(n + 1, v) ln + 1, v) 

al ln,  v) = x/r'~l(n, v) ln - 1, v} 

/ [qb l ( (n  + 2v), (1 - v))]! 
at21n, P) x/ [dp~(n, v)]! (11) 

/ 1- q 
X [e'-(l -+--eq)}(~ ) l ( n  + 2v), (1 - v)) 

~/.[ [dpl(n, v)]! 
a21n, u) = d~l((n -- 2 + 2v), (1 -- v))]! 

l--v 

• {. 1 - - _ r  .] ( e " ) " l ( n -  2 + 2 v ) , ( 1  - v)) 
+ 

In the picture (8a), the a~ operator builds two infinite towers on 10, 0) and 
10, 1), respectively, whereas the a2, az* operators interconnect the two towers. 
In the picture (8b), in which the indices are interchanged, 1 o 2 and e 
- e, the a2* operator creates two towers based on I 0, 0) and I 0, 1), while the 
a~ operator braids between these two towers. Equations (10)-(11) hold with 
1 o 2 , r  

The number operator N1 counts the a~ excitations, and can be written as 

Nl = ~ [c~(n)(a~)na'l + c2(n)a*2(a~y-~a'Ula2] 

= a~al + (eq-i _ 1)(eq-~ + 3) (a~)2a ~ + 1 - q-2 
(eq- '  + 1) 2 I ~ q-2 atza]a,a2 + "'" 

__ i t = dial + eq-i  + 3 (a2t)2a~ + 1 q-2 
eq-1 1 1 '+ q-2 a2aiala2 + "'" (12) 
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Note that NI = a~al when q2 = 1. Alternatively, we can write a~al = ~bl(Nl, 
v) = ~L,,(N1) and Nl = ~,~(a~al), v = 0, 1. The total number operator is 

N = N l + v ,  v = O ,  1 

3. D E F O R M E D  SUSY O S C I L L A T O R S  

We can define the operators Qij = a,a~ (Qlj = Qji) and 6ij = atiaj 
(6/~ = Qji), i, j = 1, 2, satisfying [in the picture (8a)] 

Qij = ~ij -~- p'Rki,jIQkt 

IN, Qu] = [N, 6ij] = 0, Vi, j = l, 2 

Ql l ln ,  v) = ~bl(n + 1, v) ln,  v) 

Q221n, p)  = ~bE(n + 2v, 1 --  v )  ln ,  v )  

QiEIn, v) = Ol2(n, v) ln  - 1 + 2v, 1 - v) (13) 

Q211n, v) = 11121(n, v) ln -- 1 + 2v, 1 -- v) 

Q]2al2 = Q21Q12 = ~22(n, v) 

Q212 = ~l/12(n, v)tlh2(n - 1 + 2v, 1 - v) 

where 

62(n, v) = 

Ol2(n, v) = 

[*l(n, v)]! // 1 - ~ q  / 2(l-v) 

~ / ~ i ( n  - -  2 + 2v, 1 - v)[~l(n + 2v, 1 - v)]! 

[cbl(n, v)]! 

/ 1 - e q V  ,,n 

~ 1 2 ( n -  1 + 2v, 1 - v) 

(14) 

~21(n, v) = 

Analogous relations can be obtained for the operators 6o and 6i) using Eqs. 
(11) and (13). Notice that (QI2) 2 4 = 0 [ (612)  2 ~ 0] when q2 4= 1 and (Q12) 2 
= 0 [(012)  2 m- 0] w h e n  q2 = 1. 

We can define the Hamiltonian H through 

{QI2, Q~2} = 2H 

[H, Ql2] = [H, Q~2] = [H, N] = 0 (15) 

n l n ,  v) = �89 v)) 2 + (~12(n - 1 + 2v, 1 - v))Z)ln, v) 
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and similarly the Hamiltonian/q through 

{Q12, 0~2} = 2I-) 
[& 0,2] = {& dhJ  = [,o, = 0 

/-)In, v) = �89 v)) 2 + (~12(n - 1 -k- 2V, 1 -- v))2)ln, v) 

(16) 

The relations (15) and (16) define a new kind of q-deformation of  the super- 
symmetric (SUSY) oscillator (Parthasarathy and Wiswanathan, 1991; Chung, 
1995). We point out that the spectrum of H (/:/) is positive and degenerate, 
i.e., the states In, 0) and In - 1, 1) have the same energy �89 0)) 2 + 
(0(n - 1, 1))2). These properties are typical for the SUSY oscillator (de 
Crombrugghe and Rittenberg, 1983; Gendensthein and Krive, 1985), except 
that for q2 :/: 1 the energy levels are not equidistant. In the limit q = + 1 
the state In, 0) (In - 1, 1)) is bosonic (fermionic) in the picture (8a). In the 
limit q = - 1  the state 10, n)(I 1, n - 1)) is bosonic (fermionic) in the 
picture (8b). 

The q-deformed SUSY algebra (15) is generated by the set {N, Ql2, 
072, H} and the q-deformed SUSY algebra (16) by the set {N, 012, 0~2,/-t}- 
Notice that our Hamiltonian H (and f/) is invariant under the q-superalgebra 
since H and Q (/) and (~) mutually commute, in contrast to the Hamiltonian 
of the form H = { Q+, Q_ } mentioned in Parthasarathy and Wiswanathan 
(1991). The q-deformed supercharges, operators Qo, O_.ij, i --/: .L also braid 
between the two towers and preserve the total number operator N = N~ + 
v. Although the operators Q and Q are not nilpotent (Q~2 v~ 0 for q2 4: 1, 
contrary to the ordinary SUSY oscillator), their irreducible representations 
remain two-dimensional, as a consequence of  the relation al z oc a~ [see (6)]. 

4. G E N E R A L I Z A T I O N  TO M U L T I M O D E  CASE 

The quadratic relations between a; operators, (6), can be written in terms 
of different R-matrices. Instead of  the original R-matrix (5) we can use an 
R-matrix of  the form 

I i 0 0 Rli,221 ~" 0 
pR = 0 e" (17) 

R22,11 0 0 
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where 

RIL22 -1 = e, 1 + ~q = R22,11 
1 - ~q 

IE2 : Et2 : ~"2 ~___ 1 
(18) 

We can reproduce the algebra in (6) from the algebra a,aj - R i j , k l a l a  k = 0 
by using the R-matrix (17) and Qq [Q.im from (13)]. This choice is particularly 
useful for generalization to multimode "peculiar" oscillators, n > 2. 

Now we propose a generalization of the algebra (6) to n oscillators, ai, 
a/t, i = 1 . . .  n. Quadratic relations between the a~ operators are given by 

a,ai = Rii,jjajaj, i --/= j 

a,aj = Ro,uajai,  i =/= j 

where no summation is assumed and where 

g i i , k k ' e i i , i i  = e j j , k k ,  i --/= j ,  i --/= k, 

Rii,yj" Rji,ii = 1, i --/= j 

(19) 

j --/= k 

(20) 
Rij,ij = Rji,ji = ~ij 

~=l, i,j 

and all other R-matrix elements vanish. 
There are 2 n- t towers of states. For example, we can create them using 

the a~ operator under the 2 n-t vacua: 

10, v2 . . . . .  Vn), v2 . . . . .  v~ = 0, 1 (21) 

Then the algebra is completely determined by 

aria1 = ~bl(Nl, v2 . . . . .  Vn) (22) 

The operator atlal is positive definite, i.e., the function (1)1 should satisfy 

d~l(nl, v2 . . . . .  vn) > 0, Vvi  = 0, 1, nl e No (23) 

The Yang-Baxter equations, associativity of  the algebra, and equation (22) 
guarantee that the complete set of states can be written as 
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(a~)nl(a~) vz . . .  (a~)" 
I n l ,  1/2 . . . . .  Vn) = l 0  . . . . .  0 )  

[~bl(nl, v2 . . . . .  Vn)]! (24)  

VZ . . . . .  Vn = 0, 1, Vn l  ~ No 

The  ac t ions  o f  the  ai, ati ope ra to r s  on  these  s ta tes  are  

a~ln, ,  v2 . . . . .  Vn) = 4 ~ l ( n l  q'- 1, "1) 2 . . . . .  1)n) ln ,  q- I, 1) 2 . . . . .  Pn) 

al lnl ,  v 2  . . . . .  v . )  = 4 q ' l ( n l ,  v2 . . . . .  Vn)lnl -- 1, v2 . . . . .  Vn) 

/ [ + , ( n t  +__21)2,1 7 1)2 . . . . .  1).)]! 
atzlnl, v 2 , . . . ,  Vn) = ~[ [dpI(nl, P 2 , .  "-'~'Vn-)i! (Rll'22)v2(~'12)nl (25) 

• In1 + 2v2, 1 - v2 . . . . .  v , )  

~ /  [d~l(nt, v2 . . . . .  v,,)] ! 
a21nl, v2 . . . . .  Vn) = [+ l (n j  - 2 + 2v2, 1 - v2 . . . . .  (R  11,22) 1-  u2(1~12) nl 

Pn)]! 

X I nl -- 2 + 2v2, 1 -- 1) 2 . . . . .  1)n) 

and  s i m i l a r l y  fo r  o the r  o p e r a t o r s  ak, ark, k > 2. 

W e  de f ine  the o p e r a t o r s  Qiy = a,a], Q~ = aja*i = Qji, Qij = atiaj, and 
Q~ = O_ji. The  Qij, O_.ij c o m m u t e  wi th  the to ta l  n u m b e r  o p e r a t o r  N: 

[N, Qij]  --~ [N, Oij]  ---- 0 (26)  

T h e  to ta l  n u m b e r  o p e r a t o r  sa t i s f ies  

IN, ai] = - a i ,  Vi  = 1 . . . . .  n (27)  

N l n b  v2 . . . . .  Un) = (nt  + v2 + " ' "  + vn ) ln t ,  v2 . . . . .  Vn) 

T h e  ac t ion  o f  the Qo o p e r a t o r  on  the s ta tes  in  (24)  is 

Qo. I nl,  "112 . . . . .  "l)n) 

= a,a t ln l ,  v2 . . . . .  Pi . . . . .  Py . . . . .  Pn) 

= d, Jij(nl, v~, . . . . .  vn) ln~, v2 . . . . .  P[ . . . . .  v j  . . . . .  Pn) (28)  

w h e r e  

and if  i = j ,  

n~ = nl - 2 +  2ui + 2vy, 

v~ = 1 - vi  

v~  = l - v j  

i 4 = j  

n[ = n t -  1 + 2vl 

v~ = 1 - vi 



20 Meljanac, Milekovi~, and Perica 

A similar relation holds for Qij with ~ij. 
The operators a2, a2* interconnect two towers, 10, 0, 1., 3 . . . . .  Pn> and 10, 

1, v3 . . . . .  vn}, for fixed v3 . . . . .  vn (and analogously for the operators ak, 
ak*, k > 2). 

The operators Oij, Qji, Oij, Qji braid between two towers, 10 . . . . .  P i ,  

. . . .  vj . . . .  } and 10 . . . . .  1 - vi . . . . .  1 - vj . . . .  ), for fixed Vk, k :/: i, k :~ 
j,  preserving the total number N = nl + v2 + "'" + v~. 

We point out that the states In1, v2 . . . . .  v~}, (24), are eigenstates of the 
operators Q2, aijQji, 0 2, OijQji, which generally do not vanish. Let us define 

{Q~, aij} = 2He = 2nji (29) 

Then we have, analogously to the relations (15), 

[Qij, Hij] = O, Vi, j = 1 . . . . .  n (30) 

Similar relations hold with Qij and H [cf. (16)]. 
In the limit Rkt,~l ---> 0, k --> 2, we find one Bose oscillator a~, a~ and n 

- 1 Fermi oscillators at, ak*, k > 2, with at, a~ = Ni, 0 2 = (a~aj) 2 = O, j --/: 
l o r i ~  1. 

5. CONCLUSION 

In conclusion, we have investigated the Fock-space representation and 
the number operator for the "peculiar" algebra defined for a two-mode oscilla- 
tor in Van der Jeugt (1993). We have shown that this algebra corresponds 
to the deformed supersymmetfic oscillator. This deformed SUSY oscillator 
represents an alternative mechanism for the violation of the Pauli exclusion 
principle. We have proposed a simple generalization of this "peculiar" algebra 
to a multimode case. It is also possible to generalize the "peculiar" algebra 
to include arbitrary relations between powers of the operators ai with arbitrary 
exponents. In this case there is no quadratic R-matrix relation. 
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